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Abstract

We address the problem of scheduling observa-
tions for a collection of Earth Observing Satel-
lites. This scheduling task is a difficult optimiza-
tion problem, involving multiple satellites, hun-
dreds of requests, constraints on when and how
to service each request, and resources such as
instruments, recording devices, transmitters, and
ground stations. High-fidelity models are required
to ensure the validity of schedules. At the same
time, the size and complexity of the problem
makes it unlikely that systematic search methods
will be able to produce good solutions in a rea-
sonable amount of time. This paper presents an
approach to solving the Earth Observing Satellite
scheduling problem that involves: 1) modeling of
the problem using a constraint-based language, 2)
a stochastic greedy search algorithm for finding
solutions, and 3) heuristics based on a generalized
contention measure for guiding the search.

Keywords: Planning, scheduling, stochastic search, con-
straint satisfaction, Earth observing satellites.

1 Introduction
NASA’s growing fleet of Earth Observing Satellites (EOSs)
1 employ advanced sensing technology to assist scientists in
the fields of meteorology, oceanography, biology, geology,
and atmospheric science to better understand the complex
interactions among Earth’s lands, oceans, and atmosphere.
Demand on these satellites is already high, and is expected
to increase significantly in the near future. Currently, sci-
ence activities on different satellites (e.g. the AM Constel-
lation) or even different instruments on the same satellite
(e.g. the ASTER instrument on the Terra satellite[11]), are
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1We will use EOS to refer to general Earth Observing Satellites,
not to be confused with the specific EOS satellite.

scheduled independently of one another, requiring the man-
ual coordination of observations by communicating teams
of mission planners.

It is unlikely that this approach to daily mission planning
and scheduling will be viable in the future. As the number of
satellites and the number of observation requests grow large,
manual coordination will no longer be possible. A more ef-
fective way to manage observation scheduling is by allow-
ing customers of the data (viz. the scientists themselves) to
request data products from a central authority instead of an
individual satellite or mission. Customer preferences will
constrain which satellite or satellites will be used to col-
lect the data. Automated techniques can reason about all
of the resources that are involved in collecting data, storing
the data temporarily on board satellites, and transmitting the
data back to Earth. This will enable more efficient manage-
ment of the fleet of satellites as well as the communication
resources that support them.

In this paper we discuss the problem of scheduling ob-
servations for a collection of Earth Observing Satellites. In
Section 2 we formulate the problem as a constrained opti-
mization problem, involving a set of observation requests,
each with associated constraints that must be satisfied by
any solution to the problem, and a set of resources, includ-
ing imaging instruments, solid state recorders (SSRs), an-
tennae, transmitters, and ground stations. Typically, there
will be too many observations to schedule with available
satellite resources. Therefore, we assume requests are prior-
itized, and search for thebestsubset of requests to service,
subject to operational constraints. In Section 3, we survey
approaches to solving the EOS scheduling problem. In Sec-
tion 4, we introduce our underlying Constraint-Based Inter-
val (CBI) representation[16]. In CBI, actions and fluents
(or states) are uniformly described as intervals during which
a state variable maintains a particular value. The CBI rep-
resentation allows modeling of how actions and fluents are
related to each other in a plan. Candidate plans are repre-
sented by variables and constraints which reflect the tem-
poral relationships between actions, ordering decisions be-
tween actions, and constraints on the parameters of states or
actions. In Section 5 we describe our approach to searching
for observation schedules. In particular, we use a stochas-
tic greedy search algorithm based on the Heuristic Biased
Stochastic Sampling (HBSS) algorithm[3]. In Section 6



we describe the heuristics used to guide this search proce-
dure. They are based on a generalized contention measure
that helps to estimate the difficulty of scheduling individual
observations. In Section 7 we conclude and discuss future
work.

2 Problem Description
We assume that constellations of the future will contain
many satellites with heterogeneous capabilities. The satel-
lites may be in any orbit. Each satellite is equipped with
a suite of instruments. Some satellites will have pointable
instruments, giving increased flexibility in what they can
observe at any point in an orbit. Some instruments, like
synthetic aperture radar, can be used in all visibility con-
ditions, while others can only be used on lighted regions of
the Earth. Other instruments may have overlapping spectral
capabilities. Satellites will also have varying SSR capacity.

Image data acquired by an Earth Observing Satellite are
either downlinked in real-time, or recorded on board for
playback at a later time. Ground stations and TDRSS satel-
lites are available to receive downlinked images. Different
satellites may be able to communicate with only a subset
of these resources, and transmission rates will differ from
satellite to satellite and from station to station. Further, there
may be different financial costs associated with using differ-
ent communications resources.

An observation request is typically specified in terms of
the type of data and instrument desired, and a series of lo-
cations and times for the sensing event. A priority, corre-
sponding to the scientific utility of the data, is also assigned
to the request. A proposed observation sequence must sat-
isfy a number of constraints. These constraints include re-
quirements on the instruments used to collect the data, and
duration and ordering constraints associated with the data
collecting, recording, and downlinking tasks. In addition,
SSR capacity, and constraints on communications equip-
ment such as satellite antennae and ground stations must be
satisfied. There may also be set-up steps associated with
particular operations, like establishing a data link prior to
downlink, or aiming an instrument prior to data acquisi-
tion. These steps generate further temporal and ordering
constraints. A request can also involve coordinating activi-
ties among different satellites. For example, a stereo image
will involve multiple sensing events of the same location at
different viewing angles. In other cases, adequate spectral
coverage may require the use of two or more instruments to
sense the same land area, or to sense both land use and at-
mospheric conditions. Finally, scientists may want to image
the same area at different times of day.

Often there will be too many observations to schedule
with available satellite resources. Solutions are preferred
based on objectives such as maximizing the number of high
priority requests serviced, maximizing the expected quality
of the observations, and minimizing the cost of downlink
operations.

In the EOS scheduling domain, requests can be submitted
at any time, and high priority targets of opportunity (e.g.,
fires, earthquakes, volcanos) may result in the need for re-

vising a partially executed schedule. In addition, there are
numerous sources of uncertainty. One of the most impor-
tant, and difficult, aspects of the EOS scheduling problem
arises from the uncertainty of the weather, specifically, with
respect to cloud cover. Image quality is determined by the
amount of cloud cover and many parts of the world have
long seasons where clouds are omnipresent. If a simple “no
cloud” scheduling policy were followed, these parts of the
world would virtually never be observed. Thus, it is im-
portant to enforce a sophisticated scheduling policy which
balances a “no cloud” cover restriction with the need for
coverage.

3 Previous Work
Previously reported work on EOS scheduling problems in-
cludes both theoretical investigations using abstract models,
as well as operational schedulers for ongoing EOS missions.
We divide our survey of previous approaches into two parts:
modeling and algorithms.

3.1 Models of EOS Scheduling
Very few approaches consider multiple satellites or the co-
ordination of observations. Burrowbridge[4] discusses the
problem of managing telemetry and data acquisition (TDA)
resources needed by multiple satellites, but does not treat
problems involving observations, data gathering, or down-
linking data.

There are a number of theoretical studies on managing a
single satellite. These usually involve simplified models of
the satellite. For example, Lemˆaitre et al.[10], Pembert on
[12] and Wolfe and Sorensen[18] do not discuss on-board
data storage or communications system management. Ben-
sana et al.[2] describe problems with on-board storage con-
straints, but without communications system management.
Pemberton[12] and Wolfe and Sorensen[18] assume that
there are no precedence constraints or any other logical con-
straints between the requests, while Lemˆaitre et al.[10] and
Bensana et al.[2] compile the complex constraints down to
simple binary and trinary exclusion constraints.

There are several operational systems for ongoing EOS
missions. The ASTER scheduler described in[11] and
the Landsat 7 scheduler[13] are two examples. These
schedulers have quite detailed models of the satellites and
the communications environment. However, they do suf-
fer from some limitations. For example, ASTER schedul-
ing is performed independently of other instruments on-
board the Terra satellite. A fixed amount of memory is al-
located for this instrument; if it is unused, it can’t be used
by any other instrument, resulting in suboptimal schedules.
Additionally, these models do not account for all of the
steps that occur on board the satellites. For instance, the
ASTER instrument is aimable, yet there is no accounting
for the time required to aim the instrument between ob-
servations. Similarly, Landsat requires time to shut down
and power up its instrument; this is assumed to take place
between scenes. While this may be sufficient for Land-
sat, it may not be good enough for future satellites with
more advanced capabilities. The ASPEN planning sys-
tem has been used to schedule observations for EO-1[14;



15]. However, the scheduling problem described in[15]
does not appear very difficult; EO-1 can only schedule 4
observations a day. It is not clear how their approach scales
to many satellites with many instruments of varying capa-
bilities.

As mentioned previously, most of the problems described
in these papers are optimization problems. The usual goal
is to maximize the weighted sum of the scheduled observa-
tions. Wolfe and Sorensen[18] describe a slightly different
problem, in which observations are valued based on when
they are performed and how much data is collected.

3.2 Scheduling Algorithms
Many of the search algorithms described in the literature are
incomplete algorithms. The primary reason for focusing on
such algorithms is that, even for small numbers of satellites,
the problems are large enough that solving them optimally
is impractical. The usual approach is to greedily select the
next highest priority request to try and schedule, and reject
it if there is nowhere for it to go. The ASTER scheduler
[11] works exactly this way, as does an approach described
by Wolfe and Sorensen[18]. Pemberton[12] describes a
family of algorithms ranging from strictly greedy to com-
plete search; after sorting the requests, blocks ofn requests
are scheduled optimally, with all previous allocations acting
as constraints on the next set of observations to schedule.
Burrowbridge[4] greedily schedules requests based on the
earliest finishing time of the request. The Landsat 7 sched-
uler [13] greedily schedules requests based on the earliest
finishing time until resources run out, then preempts pre-
viously scheduled observations based on priority. ASPEN
[14] uses a local search algorithm that generates an initial
schedule, then identifies and repairs conflicts in the schedule
by changing variable assignments. This algorithm is quite
complex, with 10 distinguished types of conflicts, and many
heuristics required to identify both the conflict to work on
and the method of addressing it.

4 Representation
We believe that effective coordination of EOSs requires
high-fidelity modeling of the entire EOS environment. Not
only do we need to model on-board satellite resources, com-
munication resources and requests, but we must also model
the detailed activity sequences on the spacecraft and on the
ground. However, we would like to make use of search tech-
niques developed for solving combinatorial problems. To
balance these needs, we use the Constraint-Based Interval
(CBI) framework.

4.1 Constraint-Based Interval Representation
The CBI framework[16] is based on an interval representa-
tion of time. Apredicateis a uniform representation of ac-
tions and states, and aninterval is the period during which
a predicate holds. Atokenis used to represent a predicate
which holds during an interval. Each token is defined by
the start, end and duration of the interval where it occurs,
as well as other parameters which further elaborate on the
predicate. For instance, aTake-Image predicate has a

(DefineCompatibility
(SINGLE ((Instrument Camera))

((Take-Image(?angle, ?mode, ?init, ?final))))
:parameterfunctions

((Data-Level(?init, ?final, ?mode, ?duration)))
:compatibility spec

(AND
(meets
(SINGLE ((Instrument Camera))
(Idle)))

(?mode OR
(HIGH met by

(SINGLE ((Instrument Camera))
((Calibrate(?angle))))))))

Figure 1: DDL syntax for a planning schema (called a
Compatibilityin DDL). The master activity for this schema
is a Take-Image . The :parameterfunctions portion of
the schema lists constraints on the parameters of the activ-
ity. The :compatibilityspec describes other activities which
must exist when the master activity is in the plan. A con-
ditional activity is shown using the OR construction; the
Calibrate activity depends on the value of the ?mode
parameter.

parameter?mode describing the gain, which can be either
low or high . The relationships between different activi-
ties are described byplanning schematawhich specify, for
each token, other tokens that must exist (e.g. pre and post
conditions), and how the tokens are related to each other.

We use the Domain Description Language (DDL)[9] to
specify planning schemata. Figure 1 shows an example of
a planning schema written in DDL. Schemata can specify
conditional effects and disjunctions of required tokens. For
instance in Figure 1, aTake-Image interval can be met
by a Calibration period if a high resolution image is
to be taken. The value of the?mode parameter indicates
whether or not aCalibration period is required. Plan-
ning schemata can also include constraints on the parame-
ters of the token. As shown in Figure 1, theTake-Image
interval has a constraint relating the mode and the amount
of data stored by the operation.

EUROPA[6] is a CBI planning paradigm which continu-
ously reformulates the planning problem as a Dynamic Con-
straint Satisfaction Problem (DCSP). This is done by map-
ping each partial plan to a CSP. The temporal constraints
form a Simple Temporal Network, which can be efficiently
solved[5], while the rest of the constraints form a general,
non-binary CSP represented by procedural constraints[8].
An additional feature includes the ability to produce plans
with flexible time; that is, activities may start and end at any
time in an interval[9]. This gives the plan some flexibil-
ity, should activities take longer or shorter than expected.
Figure 2 shows a plan fragment and its induced CSP. As-
signments of variables in the CSP correspond either to the
adding of new plan steps, or the assignment of parameters of
plan steps. As steps are added to or removed from the plan,



the CSP is updated to reflect the current partial plan. For
example, in Figure 2, adding theTake-Image step to the
plan requires adding several new variables and constraints
to the CSP. At any time, if the CSP is inconsistent, then the
partial plan it represents is invalid; if a solution is found to
the CSP, then that solution can be mapped back to a plan
which solves the problem. The advantage of such a repre-
sentation is that any algorithm which solves DCSPs can be
used to solve the planning problem.

Take−Image(?angle,?mode,?init,?final)Calibrate(?angle)

C_start C_end

C_dur

TI_start TI_end

TI_dur

TI_finalTI_init

TI_mode

meets

Eq

AddEq
AddEq

Data−Level

C_angle

Calibrate−time

Figure 2: A partial plan and its DCSP representation. The
partial plan consists of 2 activities, shown at the top of the
figure. The DCSP variables are in rounded boxes. Edges
between DCSP variables are labeled with the constraints on
those variables.

EUROPA has the ability to model various types of re-
sources. A domain model consists of a number ofattributes,
each of which represents an aspect of the objects that inter-
act in the world. Each of these attributes may be in only
one state at a time; hence, if a camera is taking an image, it
can’t also be turning. This permits simple modeling of re-
sources. Complex resources such as fuel and power can be
modeled using numerical constraints. In Figure 1, the filling
of the SSR is modeled by a constraint that relates the initial
amount of storage, the final amount of storage, and the rate
at which the data acquisition task fills the buffer.

4.2 A CBI Model of the EOS Domain
A CBI model for the EOS domain will describe the at-
tributes of a set of satellites with different types of sens-
ing instruments and resources, as well as different orbital
tracks. Resources to be modeled for each satellite include
the instruments, the SSR, and a set of antennae and trans-
mitters for downlinking data. We do not explicitly model
power consumption or satellite maneuvering operations, al-
though maneuvering periods and power-related duty cycles
may constrain the schedule. Other model elements are data
receiving stations, either ground stations or TDRSS satel-
lites.

A sensing instrument is defined primarily in terms of the
type of data it acquires, the spatial and spectral resolution
of eveery waveband (for imaging spectrometers), its swath
width, and pointing limitations (field of view, slew rate, and
so on). A solid state recording device (SSR) is defined by

the storage capacity and the rate at which it stores data. An-
tennae and transmitting devices are defined by whether they
are slewable, and also by their data transmission rate. Data
receiving stations are associated with a frequency band, and
also by the number of downlink channels they support. Each
of these entities will correspond to one or more attributes of
a model.

IdleCalibration

Take−Image

Instrument Attribute

Storing

Playback

SSR Attribute

Record

Equal

Contained−By

Aiming Pointing−Time: 
  time=c x angle

Record−Time: 
  time=data_amt x data_rate

Calibrating−Time: 
  time = c x view_angle

Record−Time: 
  time=data_amt x data_rate

Figure 3: A simplified model showing the interaction of in-
strument and SSR attributes. Ovals represent the states per-
mitted for each attribute. Solid lines indicate possible state
transitions within an attribute, dashed lines indicate tempo-
ral constraints required between attributes, and boxes indi-
cate constraints on the parameters of certain state.

Requests are identified by their location, either specified
in World Reference System (WRS) units, or latitude and
longitude. We can also model a “Quality of Service” (QoS)
type for each request. This would allow customers to pay
less for data of either lower quality or longer delivery time.
For example, in Landsat 7, requests for images made by
non-U.S. international ground stations are usually serviced
through direct downlink to the the requesting ground sta-
tion. By contrast, so-called “special” requests on Landsat
7 corresponding to exceptional events are typically simulta-
neously recorded and directly downlinked to a ground sta-
tion, and later also played back for redundancy. The utility
of scheduling a request at a particular time is a function of
both the user-defined priority and the conditions; for exam-
ple, clouds may decrease the quality of data for an obser-
vation. Thus, there is a constraint relating the conditions,
priority, and the utility of performing the observation under
those conditions. A given request may also correspond to a
coordinated activity involving multiple instruments. Coor-



dinated observation activities arise for many reasons, for ex-
ample, to take a stereo image of an area, to sample a region
over different spectral regions, or to calibrate instruments.

Idle Aiming Take_Image Aiming Take_Image

Satellite 1

Idle

Satellite 2

Idle Aiming Calibrating Communicate

TDRSS

Aiming Take_Image Idle

Idle Aiming Calibrating Communicate Idle

Idle Transmitting(S1) Idle Transmitting(S2)

Contact(S1) No−Contact Contact(S1) Contact(S2)

Instrument

SSR

Antenna

Contact

Transmitter

Instrument

SSR

Antenna

Storing(5) Record(15) Storing(20) Playback(15) Storing(5)

Storing(5) Record(11) Storing(20) Record(4) Playback(15)

Figure 4: A complete EUROPA plan with two EOSs and
one TDRSS. Each satellite has 3 attributes: the instrument,
SSR, and communication antenna. The TDRSS has two at-
tributes: the contact and transmitter.

Each attribute of a CBI model supports a limited set of
activities. Thus, an SSR can be recording, playing back
data, or idle; an antenna can be slewing, or pointing to a
receiving station; and an imaging instrument can be off,
idle, or taking an image. The model will also represent
set up events such as warming up an instrument, or slew-
ing for antennae or pointable sensing instruments. Tempo-
ral constraints impose restrictions on the duration and or-
dering of tokens in a plan. Temporal constraints may be
associated with a single activity, such as the constraint that
an antenna be slewed to a certain location before it can be
pointing at that location; or a temporal constraint can in-
volve pairs of activities, such as the constraint that a ground
station must be in contact with a satellite while data is be-
ing downlinked. Resource constraints include SSR capac-
ity, communication bandwidth, and duty cycle restrictions
on imaging instruments. Figure 3 shows how all of these as-
pects are combined in a simple model. This model shows
the interaction of an instrument attribute and an SSR at-
tribute. The instrument transitions betweenPointing,
Idle, Calibrating and Take-Image . The SSR
transitions betweenRecording, Playback andIdle .
The time required forPointing, Calibrating,
Recording and Playback activities are constrained

by the parameters of those activities. In addition,
Take-Image andRecording activities must be simul-
taneous, and whenever aPlayback occurs on the SSR the
instrument must beIdle .

A complete EUROPA plan consists of a a set oftime-
lines, one for each attribute, each comprised of a sequence
of tokens. Figure 4 illustrates a small EUROPA plan in-
volving two satellites, and a TDRSS communication satel-
lite for downlinking data. The figure indicates that every
Take-Image activity is synchronous with aRecord( N )
activity on the associated SSR, whereN is a parameter
standing for the amount of data added to storage. Similarly,
everyPlayback( N ) activity for a satellite is synchronous
with a Contact activity when TDRSS is in contact with
that satellite. Activities such asAiming the antenna are
also shown.

The EUROPA planner supports object-oriented descrip-
tions of models. Most subsystems of satellites are quite sim-
ilar, so we expect that we can define a relatively large num-
ber of different satellites quite easily. We can then vary the
parameters of these different satellite models to create more
or less challenging EOS domains. For instance, we can vary
the transmission rates and SSR capacities of the satellites,
the number of ground stations or TDRSS contacts, as well
as change the instrument makeup of satellites, to assess the
impact of different scenarios for particular sets of requests.

5 The Search Algorithm
In theory, the optimal solution to an observation schedul-
ing problem can be found using the well known system-
atic Branch and Bound algorithm. Unfortunately, complete
search algorithms are simply not practical for most large
scheduling problems. Bensana et al.[2] indicate that they
were unable to optimally solve problems with more than
about 200 observations using Russian Doll Search (a clever
but specialized variation on Branch and Bound). Pemberton
[12] makes similar observations. The only alternatives are
to use some form of greedy search or hill-climbing search,
possibly augmented with stochastic variation to escape local
optima. Fortunately, for observation scheduling these ap-
proaches tend to work well, because there are usually many
local optima that are nearly as good as the global optimum.
Thus, by injecting stochastic variation into a greedy search
procedure one of these reasonably good solutions can often
be found very quickly.

For our purposes, we have chosen to overlay a stochas-
tic greedy search algorithm on the constraint-based planning
techniques discussed earlier. In particular, the greedy search
will choose and schedule observations, and the constraint
based planning foundation will 1) propagate constraints to
rule out possibilities inconsistent with each observation as-
signment, and 2) expand individual observations by includ-
ing any necessary setup and postprocessing steps required
by the scheduled observations. The stochastic greedy search
algorithm is based on the HBSS algorithm developed by
Bresina[3]. The basic algorithm for HBSS looks like a sim-
ple greedy search with restarts.

A modified version of the algorithm appears in Figure 5.



HBSS
repeat
while observations are still possible

Select an observation
Select a time for the observation
Assign the observation to the time slot
Propagate constraints

end while
Expand any remaining subgoals
Check for consistency

end repeat
end

Figure 5: A sketch of the HBSS algorithm modified for the
EOS Scheduling problem.

This algorithm repeatedly selects an observation that still
has time windows available, then selects a time to sched-
ule the observation. This assignment is added to the plan,
and constraint propagation takes place to infer simple con-
sequences of the newly scheduled observation. These infer-
ences include eliminating choices for observations and oth-
erwise eliminating the values of variables in the DCSP rep-
resentation of the plan. In addition, if the scheduled obser-
vation requires setup steps (or has other preconditions that
must be established) this expansion can (optionally) be done
at this time. The resulting constraint propagation may lead
to an inconsistency, meaning that the scheduling of this par-
ticular observation in this time slot is not possible and must
be undone.

When it is not possible to schedule any more observa-
tions, the resulting schedule must be examined to make sure
that all observations having subgoals (setup steps or other
preconditions) have been completely expanded. If not, this
expansion must be done, constraints propagated, and the re-
sulting schedule again checked for consistency. If this pro-
cess is successful, the resulting schedule is returned. The
algorithm then restarts, and builds another schedule.

What distinguishes the HBSS algorithm from ordinary
greedy search is the way in which observations and time
slots are selected. In a pure greedy search, these choices are
made absolutely by a heuristic. In the HBSS algorithm, the
heuristic must rank or score the possible alternatives. HBSS
then chooses probabilistically from among the alternatives,
weighted according to their ranking or score. Thus, pos-
sibilities ranked highly by the heuristic have higher proba-
bility of being selected, but other lower ranked possibilities
are sometimes selected. This means that several alternatives
with roughly the same score will have roughly equal prob-
ability of being chosen. Because of the stochastic character
of the selection steps, alternative schedules are likely to be
explored with each successive restart of the algorithm.

Like most search procedures, the effectiveness of HBSS
depends critically on the quality of the heuristic advice.
Bresina[3] has shown that HBSS is particularly effective
when the ranking heuristics typically give good advice. As
the quality of the heuristic advice declines, HBSS must

search progressively longer (more restarts) to find near op-
timal schedules. In the next section we develop contention
heuristics for ranking observation choices.

6 Contention Heuristics
The success of greedy search methods depends largely on
the heuristic used to decide which variable to assign next,
and which value to assign to that variable. For observation
scheduling, these steps correspond to selecting the obser-
vation to schedule next, and selecting the time slot for the
observation. An obvious heuristic for choosing an observa-
tion is to select the one with the highest priority. In general,
this will ensure that the schedule is loaded with as many
high priority observations as possible before any lower pri-
ority observations are considered. However, there may be
many observations with the same priority, and the order in
which we consider these observations can have a dramatic
impact on the resulting schedule. Consider the simple ex-
ample shown in Figure 6, where there are two observations,
A and B, of equal priority. As shown, there are several op-
portunities for scheduling A, but only one opportunity for
scheduling B, which overlaps with the first opportunity for
A. If we choose observation A first, and foolishly schedule
it in the first available time slot, then observation B will not
appear in the schedule. In contrast, if we were to schedule B
first, other opportunities would still remain for observation
A.

Take−Image B

1 2 4 5 98 10 12 133 76 11

Take−Image A Take−Image AComm CommComm Take−Image A

Figure 6: The impact of variable and value order-
ing. Take-Image A has three possible timeslots, while
Take-Image B has only 1. The temporal constraints im-
ply that schedulingTake-Image A at time 1 makes it im-
possible to scheduleTake-Image B at all, since it can
only start at time 2.

This example suggests a simple rule of thumb for choos-
ing which observation to schedule next:prefer observations
having the fewest remaining opportunities. This heuristic
resembles the Minimum Remaining Values (MRV) heuris-
tic commonly used in the CSP community[7]. Calculating
the number of remaining opportunities for an observation is
appealing because it is simple to compute, and provides at
least some estimate of how easy it is to schedule that par-
ticular observation. However, it does not give any estimate
of how much “contention” there is for those opportunities.
For example, if there are two remaining opportunities for a
high priority observation, but absolutely no contention for
one of the time slots, then the observation will always be
easy to schedule. In contrast, if there are numerous other
observations that could use those time slots, then there is
good reason to schedule the observation early, to make sure
it gets one of those time slots.

This leads us to a more sophisticated measure of con-
tention. To start with, we will only consider contention for



time slots. We first define some terms:Observations(t)
is the set of observations that could occur at timet, and
Opportunities(o) is the set of discrete opportunities for ob-
servationo (noting that each discrete opportunity is exactly
long enough to accommodate the observation.) For a given
time slot, we could measure contention by counting the
number of observations that want that time slot, weighted
by the priority of the observation:

Contention(t) =
X

o2Observations(t)

Priority(o)

However, this measure doesn’t incorporate how badly
each observation needs the time slot; i.e. if an observation
can be scheduled in only that time slot, it needs the time
slot badly, but if it can be scheduled in lots of different time
slots, it doesn’t need the time slot very badly at all.

We can define theneedof an observation as:

Need(o) =
Priority(o)

jOpportunities(o)j

Thecontentionfor a particular time slot can then be defined
as:

Contention(t) =
X

o2Observations(t)

Need(o)

Thecontentionfor a particular observation can then be de-
fined as:

Contention(o) = min
t2Opportunities(o)

Contention(t)

We take the minimum here because if there is a low-
contention opportunity to schedule an observation, this
should not be overshadowed by other higher contention op-
portunity. In other words, adding another opportunity for an
observation should never increase the contention measure
for that observation.

In developing the equations above, we regarded obser-
vations as if they only required a single scene or time
slot. For observations that involve a sequence or group
of scenes we would have to sum up (or maximize over)
the contention measures for each of the individual scenes
(time slots). With pointable instruments, there is an in-
terval during which a given scene could be taken. This
can also be incorporated by generalizing the above equa-
tions to use time intervals rather than time points. The re-
sulting contention measures have some similarity to mea-
sures ofslack used in job shop scheduling problems[17;
1].

Measuring contention for a global resource like SSR ca-
pacity involves generalizing the above contention measure
to consider the amount of the resource needed by an obser-
vation, the resource capacity, and the interval of time un-
der consideration. LetRequires(o; r) be the amount of re-
sourcer required by observationo, and letCapacity(r; i)
be the capacity of a resourcer over a time intervali. Thus,
an SSR with a capacity of50 has aCapacity(r; i) = 50.
If a playback of20 units occurs within the intervali, then
Capacity(r; i) = 70. We then generalize the above defini-
tions to be:

Need(o; r) = Requires(o; r)
Priority(o)

jOpportunities(o)j

Contention(r; i) =

X

o2Observations(i)

Need(o)

Capacity(r; i)

Contention(r; o) = min
i2Opportunities(o)

Contention(r; i)

Again, note that these measures change as activities are
scheduled. In particular, as activities that empty the SSR
are scheduled,Capacity(r; i) may increase, and as observa-
tions are scheduled,Capacity(r; i) may decrease.

Intuitively, these contention measures provide a more ac-
curate assessment of how hard it is to actually schedule an
observation. Using these measures, our variable ordering
heuristic is:

Schedule the observation of highest priority and
highest overall contention

where contention will be a weighted sum of contention mea-
sures for the different resources, such as time slots and SSR
capacity. This approach assumes that resources areinde-
pendent; while not true, it does provide an efficiently com-
putable approximation. This heuristic provides a ranking of
observations suitable for use with the HBSS search proce-
dure.

Given an observation to schedule, we would prefer to put
it in the place where it will compete with the fewest other
observations. We can use the above contention measures to
define a value ordering heuristic:

Schedule an observation in the opportunity with
the least contention

Again, this heuristic provides a ranking suitable for use with
the HBSS search procedure.

7 Conclusions and Future Work
We have presented the problem of scheduling observations
on a collection of Earth Observing Satellites and discussed a
candidate representation and solution methodology. In order
to produce good plans, we advocated a high-fidelity model
incorporating both satellite resources and communications
resources. In order to gain maximum flexibility in solving
problems, we used the CBI paradigm, which allows us to use
algorithms from the DCSP community. We believe that this
problem is large enough and complex enough that a biased
greedy stochastic search method is the best approach. We
have presented a heuristic for guiding this search procedure
based on a general notion of contention for resources.

Our next tasks are to finish the implementation of this
heuristic, select the bias function to be used with HBSS,
and select the exact method by which subgoals of sched-
uled observations will be inserted into the plan. Once this is
done, we can then begin experiments to test the effectiveness
of this procedure on large, heterogeneous EOS scheduling
problems.
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